

MyChem.info documentation

Introduction

[image: mychem.info]
MyChem.info [http://mychem.info] provides simple-to-use REST web services to query/retrieve chemical and drug annotation data. It’s designed with an emphasis on simplicity and performance.

Quick start

MyChem.info [http://mychem.info] provides two simple web services: one for querying chemical compound or drug objects and the other for chemical/drug annotation retrieval by common IDs (e.g. inchikey, chebiID, pubchem ID etc.). Both return results in JSON [http://json.org] format.

Chemical/drug query service

URL

http://mychem.info/v1/query

Examples

http://mychem.info/v1/query?q=imatinib
http://mychem.info/v1/query?q=_exists_:chebi
http://mychem.info/v1/query?q=_exists_:drugcentral.bioactivity.uniprot.uniprot_id&fields=drugcentral.bioactivity.uniprot

Hint

View nicely formatted JSON result in your browser with this handy add-on: JSON formatter [https://chrome.google.com/webstore/detail/bcjindcccaagfpapjjmafapmmgkkhgoa] for Chrome or JSONView [https://addons.mozilla.org/en-US/firefox/addon/jsonview/] for Firefox.

To learn more

	You can read the full description of our query syntax here.

	Try it live on interactive API page [http://mychem.info/v1/api].

	Batch queries? Yes, you can. do it with a POST request.

Chemical/drug annotation service

URL

http://mychem.info/v1/chem/<chem_id>

<chem_id> can be any one of the following common chemical/drug identifiers:

	InChIKey [https://en.wikipedia.org/wiki/International_Chemical_Identifier#InChIKey],

	ChEMBLID [https://www.ebi.ac.uk/chembl/faq#faq40],

	ChEBI identifier [http://www.ebi.ac.uk/chebi/aboutChebiForward.do],

	PubChem CID [https://pubchem.ncbi.nlm.nih.gov/search/help_search.html#Cid],

	UNII [https://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/].

Examples

http://mychem.info/v1/chem/KTUFNOKKBVMGRW-UHFFFAOYSA-N
http://mychem.info/v1/chem/CHEBI:45783?fields=chebi
http://mychem.info/v1/chem/CHEMBL941?fields=chembl
http://mychem.info/v1/chem/BKJ8M8G5HI?fields=unii

To learn more

	You can read the full description of our query syntax here.

	Try it live on interactive API page [http://mychem.info/v1/api].

	Yes, batch queries via POST request as well.

Documentation

	Try it live on interactive API page [http://mychem.info/v1/api]

	Chemical annotation data
	Data sources

	Chemical object

	_id field

	_score field

	Available fields

	Data release notes
	MyChem Releases

	Chemical query service
	Service endpoint

	GET request
	Query parameters

	Query syntax

	Returned object

	Faceted queries

	Batch queries via POST
	Query parameters

	Example code

	Returned object

	Chemical annotation service
	Service endpoint

	GET request
	Query parameters

	Returned object

	Batch queries via POST
	Query parameters

	Example code

	Returned object

	Server response
	Status code 200

	Status code 400

	Status code 404

	Status code 5xx

	Biothings_client python module

Related links

	github repository [https://github.com/biothings/mychem.info/]

Chemical annotation data

Data sources

We currently obtain chemical annotation data from several data resources and
keep them up-to-date, so that you don’t have to do it:

Total Chemicals loaded: N/A

	Source

	version

	# of chemicals

	key name*

	data notes

	AEOLUS [http://www.nature.com/articles/sdata201626]

	-

	0

	aeolus

	notes

	ChEBI [https://www.ebi.ac.uk/chebi/]

	-

	0

	chebi

	notes

	ChEMBL [https://www.ebi.ac.uk/chembl/]

	-

	0

	chembl

	

	DrugCentral [http://drugcentral.org/]

	-

	0

	drugcentral

	

	FDA Orphan Drug Designations [https://www.accessdata.fda.gov/scripts/opdlisting/oopd/]

	-

	0

	fda_orphan_drug

	

	ginas [https://ginas.ncats.nih.gov]

	-

	0

	ginas

	

	NDC [http://www.fda.gov/Drugs/InformationOnDrugs/ucm142438.htm]

	-

	0

	ndc

	notes

	PharmGKB [https://www.pharmgkb.org/]

	-

	0

	pharmgkb

	

	PubChem [https://pubchem.ncbi.nlm.nih.gov/]

	-

	0

	pubchem

	

	SIDER [http://sideeffects.embl.de/]

	-

	0

	sider

	notes

	UNII [https://fdasis.nlm.nih.gov/srs/]

	-

	0

	unii

	

* key name: this is the key for the specific annotation data in a chemical object.

The most updated information can be accessed here [http://mychem.info/v1/metadata].

Note

Each data source may have its own usage restrictions. Please refer to the data source pages above for their specific restrictions.

Chemical object

Chemical annotation data are both stored and returned as a chemical object, which
is essentially a collection of fields (attributes) and their values:

{
 "_id": "KTUFNOKKBVMGRW-UHFFFAOYSA-N",
 "unii": {
 "_license": "http://bit.ly/2Pg8Oo9",
 "inchikey": "KTUFNOKKBVMGRW-UHFFFAOYSA-N",
 "ingredient_type": "INGREDIENT SUBSTANCE",
 "inn_id": "8031",
 "molecular_formula": "C29H31N7O",
 "ncit": "C62035",
 "preferred_term": "IMATINIB",
 "pubchem": "5291",
 "registry_number": "152459-95-5",
 "rxcui": "282388",
 "smiles": "CN1CCN(CC2=CC=C(C=C2)C(=O)NC3=CC(NC4=NC=CC(=N4)C5=CC=CN=C5)=C(C)C=C3)CC1",
 "unii": "BKJ8M8G5HI"
 }
}

The example above omits many of the available fields. For a full example,
check out this example chemical [http://mychem.info/v1/chem/KTUFNOKKBVMGRW-UHFFFAOYSA-N], or try the interactive API page [http://mychem.info/v1/api].

_id field

Each individual chemical object contains an “_id” field as the primary key. Where possible, MyChem.info chemical objects use InChIKey [https://en.wikipedia.org/wiki/International_Chemical_Identifier#InChIKey] (a 27 character hash of the International Chemical Identifier) as their “_id”. If an InChIKey isn’t available, any one of the following datasource IDs may be used:

	ChEMBLID [https://www.ebi.ac.uk/chembl/faq#faq40],

	ChEBI identifier [http://www.ebi.ac.uk/chebi/aboutChebiForward.do],

	PubChem CID [https://pubchem.ncbi.nlm.nih.gov/search/help_search.html#Cid],

	UNII [https://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/].

_score field

You will often see a “_score” field in the returned chemical object, which is the internal score representing how well the query matches the returned chemical object. It probably does not mean much in chemical annotation service when only one chemical object is returned. In chemical query service, by default, the returned chemical hits are sorted by the scores in descending order.

Available fields

The table below lists all of the possible fields that could be in a chemical object, as well as all of their parents (for nested fields). If the field is indexed, it may also be directly queried.

 	Field
 	Indexed
 	Type
 	Notes

Data release notes

This page contains metadata about each MyChem.info data release. Click a link to see more.

MyChem Releases

Loading release data . . .

Chemical query service

This page describes the reference for MyChem.info chemical query web service. It’s also recommended to try it live on our interactive API page [http://mychem.info/v1/api].

Service endpoint

http://mychem.info/v1/query

GET request

Query parameters

q

Required, passing user query. The detailed query syntax for parameter “q” we explained below.

fields

Optional, a comma-separated string to limit the fields returned from the matching chemical/drug hits. The supported field names can be found from any chemical object (e.g. here [http://mychem.info/v1/chem/MNJVRJDLRVPLFE-UHFFFAOYSA-N]). Note that it supports dot notation, and wildcards as well, e.g., you can pass “chebi”, “chebi.name”, or “dbnsfp.products.*”. If “fields=all”, all available fields will be returned. Default: “all”.

size

Optional, the maximum number of matching chemical hits to return (with a cap of 1000 at the moment). Default: 10.

from

Optional, the number of matching chemical hits to skip, starting from 0. Default: 0

Hint

The combination of “size” and “from” parameters can be used to get paging for large query:

q=chebi.name:acid*&size=50 first 50 hits
q=chebi.name:acid*&size=50&from=50 the next 50 hits

fetch_all

Optional, a boolean, which when TRUE, allows fast retrieval of all unsorted query hits. The return object contains a _scroll_id field, which when passed as a parameter to the query endpoint, returns the next 1000 query results. Setting fetch_all = TRUE causes the results to be inherently unsorted, therefore the sort parameter is ignored. For more information see examples using fetch_all here. Default: FALSE.

scroll_id

Optional, a string containing the _scroll_id returned from a query request with fetch_all = TRUE. Supplying a valid scroll_id will return the next 1000 unordered results. If the next results are not obtained within 1 minute of the previous set of results, the scroll_id becomes stale, and a new one must be obtained with another query request with fetch_all = TRUE. All other parameters are ignored when the scroll_id parameter is supplied. For more information see examples using scroll_id here.

sort

Optional, the comma-separated fields to sort on. Prefix with “-” for descending order, otherwise in ascending order. Default: sort by matching scores in descending order.

facets

Optional, a single field or comma-separated fields to return facets, can only be used on non-free text fields. E.g. “facets=chembl.molecule_properties.full_mwt”. See examples of faceted queries here.

facet_size

Optional, an integer (1 <= facet_size <= 1000) that specifies how many buckets to return in a faceted query.

callback

Optional, you can pass a “callback” parameter to make a JSONP [http://ajaxian.com/archives/jsonp-json-with-padding] call.

dotfield

Optional, can be used to control the format of the returned chemical object. If “dotfield” is true, the returned data object is returned flattened (no nested objects) using dotfield notation for key names. Default: false.

email

Optional, if you are regular users of our services, we encourage you to provide us an email, so that we can better track the usage or follow up with you.

Query syntax

Examples of query parameter “q”:

Simple queries

search for everything:

q=imatinib # search all default fields for term

Fielded queries

q=chebi.xref.uniprot:P80175 # for matching value on a specific field

q=chebi.name:(acid alcohol) # multiple values for a field
q=chebi.name:(acid OR alcohol) # multiple values for a field using OR

q=_exists_:pubchem # having pubchem field
q=NOT _exists_:chebi # missing chebi field

Hint

For a list of available fields, see here.

Range queries

q=pubchem.exact_mass:<200
q=pubchem.exact_mass:>=500

q=pubchem.exact_mass:[200 TO 500] # bounded (including 200 and 500)
q=pubchem.exact_mass:{200 TO 500} # unbounded

Wildcard queries

Wildcard character “*” or “?” is supported in either simple queries or fielded queries:

q=chebi.name:acid*

Note

Wildcard character can not be the first character. It will be ignored.

Scrolling queries

If you want to return ALL results of a very large query, sometimes the paging method described above can take too long. In these cases, you can use a scrolling query.
This is a two-step process that turns off database sorting to allow very fast retrieval of all query results. To begin a scrolling query, you first call the query
endpoint as you normally would, but with an extra parameter fetch_all = TRUE. For example, a GET request to:

http://mychem.info/v1/query?q=_exists_:chebi&fields=chebi.name&fetch_all=TRUE

Returns the following object:

{
 "_scroll_id": "FGluY2x1ZGVfY29udGV4dF91dWlkDnF1ZXJ5VGhlbkZldGNoAxY4REs4cmRsRFI1YWcxNXFpZ1VoN3JnAAAAAABJG1EWNWM0Skl3WWlRdWVzQkpIWGcyYTUwQRZqVUhTRnd5ZFFkV0hvSEN3WXdSU0h3AAAAAAAQb00WUngzX0FxcmNRRktxd0tnWUdUZEtMQRZ2bWg5LUc2SFQyQ19FTjA5Rl8xNEFBAAAAAABLL-4WTEthWGpxUFVUa0tqSXFJNTItMnlQUQ==",
 "took": 422,
 "total": 145633,
 "max_score": 1,
 "hits": [
 {
 "_id": "BTJXBZZBBNNTOV-UHFFFAOYSA-N",
 "_score": 1,
 "chebi": {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "Linalyl benzoate"
 }
 },
 {
 "_id": "BUPRFDPUIJNOLS-UFYCRDLUSA-N",
 "_score": 1,
 "chebi": {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "Tyr-Tyr-Met"
 }
 },
 .
 .
 .
]
}

At this point, the first 1000 hits have been returned (of ~11,000 total), and a scroll has been set up for your query. To get the next batch of 1000 unordered results, simply execute a GET request to the following address, supplying the _scroll_id from the first step into the scroll_id parameter in the second step:

http://mychem.info/v1/query?scroll_id=cXVlcnlUaGVuRmV0Y2g7MTA7Njg4ODAwOTI6SmU0ck9oMTZUUHFyRXlYSTNPS2pMZzs2ODg4MDA5MTpKZTRyT2gxNlRQcXJFeVhJM09LakxnOzY4ODgwMDkzOkplNHJPaDE2VFBxckV5WEkzT0tqTGc7Njg4ODAwOTQ6SmU0ck9oMTZUUHFyRXlYSTNPS2pMZzs2ODg4MDEwMDpKZTRyT2gxNlRQcXJFeVhJM09LakxnOzY4ODgwMDk2OkplNHJPaDE2VFBxckV5WEkzT0tqTGc7Njg4ODAwOTg6SmU0ck9oMTZUUHFyRXlYSTNPS2pMZzs2ODg4MDA5NzpKZTRyT2gxNlRQcXJFeVhJM09LakxnOzY4ODgwMDk5OkplNHJPaDE2VFBxckV5WEkzT0tqTGc7Njg4ODAwOTU6SmU0ck9oMTZUUHFyRXlYSTNPS2pMZzswOw==

Hint

Your scroll will remain active for 1 minute from the last time you requested results from it. If your scroll expires before you get the last batch of results, you must re-request the scroll_id by setting fetch_all = TRUE as in step 1.

Hint

When you need to use this “scrolling query” feature via “fetch_all” parameter, we recommend you to use our Python client “biothings_client”.

Boolean operators and grouping

You can use AND/OR/NOT boolean operators and grouping to form complicated queries:

q=_exists_:chebi AND _exists_:pubchem AND operator
q=_exists_:chebi AND NOT _exists_:pubchem NOT operator
q=_exists_:chebi OR (_exists_:uniprot AND _exists_:pubchem) grouping with ()

Escaping reserved characters

If you need to use these reserved characters in your query, make sure to escape them using a back slash (”"):

+ - = && || > < ! () { } [] ^ " ~ * ? : \ /

Returned object

A GET request like this:

http://mychem.info/v1/query?q=chebi.name:acid&fields=chebi.name

should return hits as:

{
 "took": 22,
 "total": 13462,
 "max_score": 4.1048613,
 "hits": [
 {
 "_id": "ZFSLODLOARCGLH-UHFFFAOYSA-N",
 "_score": 4.1048613,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "cyanuric acid"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "isocyanuric acid"
 }
]
 },
 {
 "_id": "JRPHGDYSKGJTKZ-UHFFFAOYSA-N",
 "_score": 4.066448,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "phosphoroselenoic acid"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "selenophosphoric acid"
 }
]
 },
 {
 "_id": "GQHALSXZONOXGJ-WHJCQOFKSA-N",
 "_score": 4.0196724,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "clavaminic acid zwitterion"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "clavaminic acid"
 }
]
 },
 {
 "_id": "BONQGFBLZGPXMG-PIYBLCFFSA-N",
 "_score": 4.0196724,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "dihydroclavaminic acid zwitterion"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "dihydroclavaminic acid"
 }
]
 },
 {
 "_id": "BPMFZUMJYQTVII-UHFFFAOYSA-N",
 "_score": 4.0196724,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "guanidinoacetic acid zwitterion"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "guanidinoacetic acid"
 }
]
 },
 {
 "_id": "MPNWPLYZGCKKFY-VDTYLAMSSA-N",
 "_score": 4.0196724,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "amidinoproclavaminic acid zwitterion"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "amidinoproclavaminic acid"
 }
]
 },
 {
 "_id": "NMCINKPVAOXDJH-VDTYLAMSSA-N",
 "_score": 4.004429,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "proclavaminic acid zwitterion"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "proclavaminic acid"
 }
]
 },
 {
 "_id": "UYADDEKIZFRINK-LURJTMIESA-N",
 "_score": 4.004429,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "deoxyamidinoproclavaminic acid zwitterion"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "deoxyamidinoproclavaminic acid"
 }
]
 },
 {
 "_id": "ZNOVTXRBGFNYRX-STQMWFEESA-N",
 "_score": 4.004429,
 "chebi": [
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "levomefolic acid"
 },
 {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "5-methyltetrahydrofolic acid"
 }
]
 },
 {
 "_id": "WWVJUCNOSUHCFP-SDFLBUSUSA-N",
 "_score": 4.004429,
 "chebi": {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "acid fuchsin (free acid form)"
 }
 }
]
}

“total” in the output gives the total number of matching hits, while the actual hits are returned under “hits” field. “size” parameter controls how many hits will be returned in one request (default is 10). Adjust “size” parameter and “from” parameter to retrieve the additional hits.

Faceted queries

If you need to perform a faceted query, you can pass an optional “facets” parameter.

A GET request like this:

http://mychem.info/v1/query?q=chebi.name:acid&fields=chebi.name&facets=chebi.xrefs.reactome&size=0

should return hits as:

{
 "took": 112,
 "total": 13462,
 "max_score": null,
 "facets": {
 "chebi.xrefs.reactome": {
 "_type": "terms",
 "terms": [
 {
 "count": 19,
 "term": "r-hsa-379048"
 },
 {
 "count": 19,
 "term": "r-hsa-749448"
 },
 {
 "count": 19,
 "term": "r-hsa-749452"
 },
 {
 "count": 15,
 "term": "r-hsa-383313"
 },
 {
 "count": 13,
 "term": "r-hsa-444191"
 },
 {
 "count": 7,
 "term": "r-hsa-194187"
 },
 {
 "count": 7,
 "term": "r-hsa-1989746"
 },
 {
 "count": 7,
 "term": "r-hsa-5627891"
 },
 {
 "count": 7,
 "term": "r-hsa-879585"
 },
 {
 "count": 7,
 "term": "r-hsa-9031856"
 }
],
 "other": 1562,
 "missing": 7,
 "total": 120
 }
 }
}

Batch queries via POST

Although making simple GET requests above to our chemical query service is sufficient for most use cases,
there are times you might find it more efficient to make batch queries (e.g., retrieving chemical
annotation for multiple chemicals). Fortunately, you can also make batch queries via POST requests when you
need:

URL: http://mychem.info/v1/query
HTTP method: POST

Query parameters

q

Required, multiple query terms seperated by comma (also support “+” or white space), but no wildcard, e.g., ‘q=SDUQYLNIPVEERB-QPPQHZFASA-N,SESFRYSPDFLNCH-UHFFFAOYSA-N’

scopes

Optional, specify one or more fields (separated by comma) as the search “scopes”, e.g., “scopes=chebi”. The available “fields” can be passed to “scopes” parameter are
listed here. Default:

fields

Optional, a comma-separated string to limit the fields returned from the matching chem hits. The supported field names can be found from any chemical object. Note that it supports dot notation, and wildcards as well, e.g., you can pass “chebi”, “chebi.name”, or “dbnsfp.products.*”. If “fields=all”, all available fields will be returned. Default: “all”.

email

Optional, if you are regular users of our services, we encourage you to provide us an email, so that we can better track the usage or follow up with you.

Example code

Unlike GET requests, you can easily test them from browser, make a POST request is often done via a
piece of code. Here is a sample python snippet using httplib2 [https://pypi.org/project/httplib2/] module:

import httplib2
h = httplib2.Http()
headers = {'content-type': 'application/x-www-form-urlencoded'}
params = 'q=CHEBI:175901,CHEBI:41237&scopes=chebi.id&fields=chebi.name'
res, con = h.request('http://mychem.info/v1/query', 'POST', params, headers=headers)

or this example using requests [http://docs.python-requests.org] module:

import requests
params = {'q': 'CHEBI:175901,CHEBI:41237', 'scopes': 'chebi.id', 'fields': 'chebi.name'}
res = requests.post('http://mychem.info/v1/query', params)
con = res.json()

Returned object

Returned result (the value of “con” variable above) from above example code should look like this:

[
 {
 "query": "CHEBI:175901",
 "_id": "SDUQYLNIPVEERB-QPPQHZFASA-N",
 "_score": 10.408574,
 "chebi": {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "gemcitabine"
 }
 },
 {
 "query": "CHEBI:41237",
 "_id": "SESFRYSPDFLNCH-UHFFFAOYSA-N",
 "_score": 10.413283,
 "chebi": {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "benzyl benzoate"
 }
 }
]

Tip

“query” field in returned object indicates the matching query term.

If a query term has no match, it will return with “notfound” field as “true”:

[
 ...,
 {'query': '...',
 'notfound': true},
 ...
]

Chemical annotation service

This page describes the reference for the MyChem.info chemical annotation web
service. It’s also recommended to try it live on our interactive API page [http://mychem.info/v1/api].

Service endpoint

http://mychem.info/v1/chem

GET request

Obtaining the chemical annotation via our web service is as simple as calling this URL:

http://mychem.info/v1/chem/<chemid>

chemid above is any one of several common chemical identifiers: InChIKey [https://en.wikipedia.org/wiki/International_Chemical_Identifier#InChIKey], ChEMBLID [https://www.ebi.ac.uk/chembl/faq#faq40], ChEBI identifier [http://www.ebi.ac.uk/chebi/aboutChebiForward.do], PubChem CID [https://pubchem.ncbi.nlm.nih.gov/search/help_search.html#Cid], UNII [https://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/].

By default, this will return the complete chemical annotation object in JSON format. See here for an example and here for more details. If the input chemid is not valid, 404 (NOT FOUND) will be returned.

Optionally, you can pass a “fields” parameter to return only the annotation you want (by filtering returned object fields):

http://mychem.info/v1/chem/KTUFNOKKBVMGRW-UHFFFAOYSA-N?fields=chembl

“fields” accepts any attributes (a.k.a fields) available from the chemical object. Multiple attributes should be separated by commas. If an attribute is not available for a specific chemical object, it will be ignored. Note that the attribute names are case-sensitive.

Just like the chemical query service, you can also pass a “callback” parameter to make a JSONP [http://ajaxian.com/archives/jsonp-json-with-padding] call.

Query parameters

fields

Optional, can be a comma-separated fields to limit the fields returned from the chemical object. If “fields=all”, all available fields will be returned. Note that it supports dot notation as well, e.g., you can pass “chebi.name”. Default: “fields=all”.

callback

Optional, you can pass a “callback” parameter to make a JSONP [http://ajaxian.com/archives/jsonp-json-with-padding] call.

filter

Alias for “fields” parameter.

email

Optional, if you are regular users of our services, we encourage you to provide us an email, so that we can better track the usage or follow up with you.

Returned object

A GET request like this:

http://mychem.info/v1/chem/KTUFNOKKBVMGRW-UHFFFAOYSA-N?fields=pubchem

should return a chemical object below:

{
 "_id": "KTUFNOKKBVMGRW-UHFFFAOYSA-N",
 "_version": 1,
 "pubchem": {
 "_license": "http://bit.ly/2AqoLOc",
 "chiral_atom_count": 0,
 "chiral_bond_count": 0,
 "cid": 5291,
 "complexity": 706,
 "covalently-bonded_unit_count": 1,
 "defined_atom_stereocenter_count": 0,
 "defined_bond_stereocenter_count": 0,
 "exact_mass": 493.259,
 "formal_charge": 0,
 "heavy_atom_count": 37,
 "hydrogen_bond_acceptor_count": 7,
 "hydrogen_bond_donor_count": 2,
 "inchi": "InChI=1S/C29H31N7O/c1-21-5-10-25(18-27(21)34-29-31-13-11-26(33-29)24-4-3-12-30-19-24)32-28(37)23-8-6-22(7-9-23)20-36-16-14-35(2)15-17-36/h3-13,18-19H,14-17,20H2,1-2H3,(H,32,37)(H,31,33,34)",
 "inchi_key": "KTUFNOKKBVMGRW-UHFFFAOYSA-N",
 "isotope_atom_count": 0,
 "iupac": {
 "traditional": "4-[(4-methylpiperazino)methyl]-N-[4-methyl-3-[[4-(3-pyridyl)pyrimidin-2-yl]amino]phenyl]benzamide"
 },
 "molecular_formula": "C29H31N7O",
 "molecular_weight": 493.615,
 "monoisotopic_weight": 493.259,
 "rotatable_bond_count": 7,
 "smiles": {
 "isomeric": "CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=CC(=N4)C5=CN=CC=C5"
 },
 "tautomers_count": 72,
 "topological_polar_surface_area": 86.3,
 "undefined_atom_stereocenter_count": 0,
 "undefined_bond_stereocenter_count": 0,
 "xlogp": 3.5
 }
}

Batch queries via POST

Although making simple GET requests above to our chemical query service is sufficient in most use cases,
there are some times you might find it’s easier to batch query (e.g., retrieving chemical
annotations for multiple chemicals). Fortunately, you can also make batch queries via POST requests when you
need:

URL: http://mychem.info/v1/chem
HTTP method: POST

Query parameters

ids

Required. Accept multiple chemical ids separated by comma, e.g., “ids=SDUQYLNIPVEERB-QPPQHZFASA-N,SESFRYSPDFLNCH-UHFFFAOYSA-N,SHGAZHPCJJPHSC-ZVCIMWCZSA-N”. Note that currently we only take the input ids up to 1000 maximum, the rest will be omitted.

fields

Optional, can be a comma-separated fields to limit the fields returned from the matching hits.
If “fields=all”, all available fields will be returned. Note that it supports dot notation as well, e.g., you can pass “chembl” or “chebi.name”. Default: “all”.

email

Optional, if you are regular users of our services, we encourage you to provide us an email, so that we can better track the usage or follow up with you.

Example code

Unlike GET requests, you can easily test them from browser, make a POST request is often done via a
piece of code, still trivial of course. Here is a sample python snippe using httplib2 [https://pypi.org/project/httplib2/] modulet:

import httplib2
h = httplib2.Http()
headers = {'content-type': 'application/x-www-form-urlencoded'}
params = 'ids=SDUQYLNIPVEERB-QPPQHZFASA-N,SESFRYSPDFLNCH-UHFFFAOYSA-N&fields=chebi.name'
res, con = h.request('http://mychem.info/v1/chem', 'POST', params, headers=headers)

or this example using requests [http://docs.python-requests.org] module:

import requests
params = {'ids': 'SDUQYLNIPVEERB-QPPQHZFASA-N,SESFRYSPDFLNCH-UHFFFAOYSA-N', 'fields': 'chebi.name'}
res = request.post('http://mychem.info/v1/chem', params)
con = res.json()

Returned object

Returned result (the value of “con” variable above) from above example code should look like this:

[
 {
 "query": "SDUQYLNIPVEERB-QPPQHZFASA-N",
 "_id": "SDUQYLNIPVEERB-QPPQHZFASA-N",
 "_version": 1,
 "chebi": {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "gemcitabine"
 }
 },
 {
 "query": "SESFRYSPDFLNCH-UHFFFAOYSA-N",
 "_id": "SESFRYSPDFLNCH-UHFFFAOYSA-N",
 "_version": 1,
 "chebi": {
 "_license": "http://bit.ly/2KAUCAm",
 "name": "benzyl benzoate"
 }
 }
]

Server response

The MyChem.info server returns a variety of query responses, and response status codes. They are listed here.

Note

These examples show query responses using the python requests [http://docs.python-requests.org/en/master/] package.

Status code 200

A 200 status code indicates a successful query, and is accompanied by the query response payload.

In [1]: import requests

In [2]: r = requests.get('http://mychem.info/v1/query?q=_exists_:chebi')

In [3]: r.status_code
Out[3]: 200

In [4]: data = r.json()

In [5]: data.keys()
Out[5]: dict_keys(['total', 'max_score', 'took', 'hits'])

Status code 400

A 400 status code indicates an improperly formed query, and is accompanied by a response payload describing the source of the error.

In [6]: r = requests.get('http://mychem.info/v1/query?q=_exists_:chebi&size=u')

In [7]: r.status_code
Out[7]: 400

In [8]: data = r.json()

In [9]: data
Out[9]:
{'error': "Expected 'size' parameter to have integer type. Couldn't convert 'u' to integer",
 'success': False}

Status code 404

A 404 status code indicates either an unrecognized URL, as in (/query is misspelled /quer resulting in an unrecognized URL):

In [10]: r = requests.get('http://mychem.info/v1/quer?q=_exists_:chebi')

In [11]: r.status_code
Out[11]: 404

or, for the /chem endpoint, a 404 status code could be from querying for a nonexistent chemical ID, as in:

In [12]: r = requests.get('http://mychem.info/v1/chem/5')

In [13]: r.status_code
Out[13]: 404

In [14]: data = r.json()

In [15]: data
Out[15]:
{'error': "ID '5' not found",
 'success': False}

Status code 5xx

Any 5xx status codes are the result of uncaught query errors. Ideally, these should never occur. We routinely check our logs for these types of errors and add code to catch them, but if you see any status 5xx responses, please submit a bug report to help@mychem.info.

Biothings_client python module

You can access the MyChem.info services programmatically with our biothings_client [https://pypi.org/project/biothings-client/] unified python client.

Index

Data Sources

This page records the notes specific to each data source, regarding the ETL process when their data were integrated into MyChem.info [http://mychem.info]:

Note

The structured metadata about all data sources can be accessed from the metadata endpoint [http://mychem.info/v1/metadata]. The detailed information about the integrated data is described in this data page.

AEOLUS

The value of aeolus.outcomes field is a list of outcome objects. The list is sorted by the aeolus.outcomes.case_count field in the descending order. In some rare cases, the list can be a large list (up to ~10K). The large list is often associated with common chemicals (e.g. asprin, omeprazole). For the purpose of reducing the total size of a single chemical object, we truncated the aeolus.outcomes list up to 5000 items.

This truncation affects only 165 objects (as of 2018-11-28, full list here [https://github.com/biothings/mychem.info/blob/master/src/hub/dataload/sources/aeolus/truncated_docs.tsv]), comparing to total 3,044 objects containing aeolus data (~5%).

ChEBI

The following chebi.xrefs fields are subject to truncation:

chebi.xrefs.intenz
chebi.xrefs.rhea
chebi.xrefs.uniprot
chebi.xrefs.sabio_rk
chebi.xrefs.patent

The value of each fields above is a list. In some cases, the list can be very large (up to ~90K items). The large list is often associated with common chemicals (e.g. water, ATP). For the purpose of reducing the total size of a single chemical object, we removed the above fields if their values contain more than 1000 items.

This truncation affects only 143 objects (as of 2018-11-28, full list here [https://github.com/biothings/mychem.info/blob/master/src/hub/dataload/sources/chebi/exclusion_ids.py]), comparing to total 98,511 objects containing chebi data (<0.15%).

ChEMBL

Data for ChEMBL [https://www.ebi.ac.uk/chemb] is pulled from 6 online json sources:

	Molecule [https://www.ebi.ac.uk/chembl/api/data/molecule.json], which serves as a root data source. Entries from other sources are attached molecule entries as new fields

	Drug Indications [https://www.ebi.ac.uk/chembl/api/data/drug_indication.json], which will parsed and attached to molecule entries, e.g. molecule["drug_indications"] = list_of_drug_indications

	Drug Mechanisms [https://www.ebi.ac.uk/chembl/api/data/mechanism.json], which will parsed and attached to molecule entries, e.g. molecule["drug_mechanism"] = list_of_drug_mechanism

	Drug [https://www.ebi.ac.uk/chembl/api/data/drug.json], used to augment first_approval field to drug indication entries

	Target [https://www.ebi.ac.uk/chembl/api/data/target.json], used to augment target_name and target_organism fields to drug mechanism entries

	Binding Sites [https://www.ebi.ac.uk/chembl/api/data/binding_site.json], used to augment binding_site_name field to drug mechanism entries

Dictionaries are created for each chemical based on their standardinchikey in the following format:

{_id: "standardinchikey", "chembl": {"<drug_indications>":"<...>", "<drug_mechanisms>":"<...>",..}}

DrugBank

Due to licensing restrictions, we removed DrugBank data from MyChem.info on 09/08/2021.

FDA Orphan Drug Designations

This datasource was added to MyChem.info on 09/08/2020. The data comes from a JSON file hosted here [https://raw.githubusercontent.com/r76941156/fda_orphan_drug/main/data.json]

NDC

The value of ndc field is a list. In some rare cases, the list can be a large list (up to ~4K). The entire ndc field will be removed if the list contains more than 1000 items.

This truncation affects only 4 objects (as of 2018-11-28, full list here [https://github.com/biothings/mychem.info/blob/master/src/hub/dataload/sources/ndc/exclusion_ids.py]), comparing to total 36,893 objects containing ndc data (~0.01%).

SIDER

The value of sider field is a list of side-effect objects. The list of side-effect objects are already sorted by the value of the sider.side_effect.frequency field in the descending order (e.g. “92.6%”, “65%”). In the case of no sider.side_effect.frequency value or non-numeric values (e.g. “common”, “rare”, “post-marketing”), these side-effect objects are kept at the top of the list.

In some rare cases, the list can be very large (up to ~5K). We then truncated the list up to 2000.

This truncation affects only 26 objects (as of 2018-11-28, full list here [https://github.com/biothings/mychem.info/blob/master/src/hub/dataload/sources/sider/truncated_docs.tsv]), comparing to total 1,507 objects containing sider data (~1.7%).

UniChem

Data for UniChem [https://www.ebi.ac.uk/unichem] is pulled from 3 files, including:

	UC_SOURCE.txt.gz, which (once decompressed) supplies matching values for source ids (src_id) and source names.

	UC_STRUCTURE.txt.gz, which provides the UniChem entry identifies (uci) as well as the standardinchikey (standardinchikey)

	UC_XREF.txt.gz, which provides a source id (src_id), the name used for the given source (src_compound_id), and the uci

Using the above values from each of the 3 files, dictionaries are created for each chemical based on their standardinchikey in the following format:

{_id: "standardinchikey", "unichem": {"<source_name>":"<source_specific_id>", "<source_name>":"<source_specific_id>",..}}

Directories containing file dumps can be found at: ftp://ftp.ebi.ac.uk/pub/databases/chembl/UniChem/data/oracleDumps/

Quick start

MyChem.info [http://mychem.info] provides two simple web services: one for querying chemical compound or drug objects and the other for chemical/drug annotation retrieval by common IDs (e.g. inchikey, chebiID, pubchem ID etc.). Both return results in JSON [http://json.org] format.

Chemical/drug query service

URL

http://mychem.info/v1/query

Examples

http://mychem.info/v1/query?q=imatinib
http://mychem.info/v1/query?q=_exists_:chebi
http://mychem.info/v1/query?q=_exists_:drugcentral.bioactivity.uniprot.uniprot_id&fields=drugcentral.bioactivity.uniprot

Hint

View nicely formatted JSON result in your browser with this handy add-on: JSON formatter [https://chrome.google.com/webstore/detail/bcjindcccaagfpapjjmafapmmgkkhgoa] for Chrome or JSONView [https://addons.mozilla.org/en-US/firefox/addon/jsonview/] for Firefox.

To learn more

	You can read the full description of our query syntax here.

	Try it live on interactive API page [http://mychem.info/v1/api].

	Batch queries? Yes, you can. do it with a POST request.

Chemical/drug annotation service

URL

http://mychem.info/v1/chem/<chem_id>

<chem_id> can be any one of the following common chemical/drug identifiers:

	InChIKey [https://en.wikipedia.org/wiki/International_Chemical_Identifier#InChIKey],

	ChEMBLID [https://www.ebi.ac.uk/chembl/faq#faq40],

	ChEBI identifier [http://www.ebi.ac.uk/chebi/aboutChebiForward.do],

	PubChem CID [https://pubchem.ncbi.nlm.nih.gov/search/help_search.html#Cid],

	UNII [https://www.fda.gov/ForIndustry/DataStandards/SubstanceRegistrationSystem-UniqueIngredientIdentifierUNII/].

Examples

http://mychem.info/v1/chem/KTUFNOKKBVMGRW-UHFFFAOYSA-N
http://mychem.info/v1/chem/CHEBI:45783?fields=chebi
http://mychem.info/v1/chem/CHEMBL941?fields=chembl
http://mychem.info/v1/chem/BKJ8M8G5HI?fields=unii

To learn more

	You can read the full description of our query syntax here.

	Try it live on interactive API page [http://mychem.info/v1/api].

	Yes, batch queries via POST request as well.

 _static/information.png

_static/jbrowse-plugin-screenshot-small.png
prnaryous
[——
S ———
o
——
s o s
o s
o b oty o400
i e enome.
s s ot 6 e gt | 30k
p——
- e
o —
v o oot acgen s

_static/file.png

_static/minus.png

_static/mychem.png

_static/jbrowse-plugin-screenshot.png
Available Tracks

Xfilter tracks.

) MyGene.info v2
MyGene.info v3

~ MyVariant.info

) MyVariant.info gwas catalog
) MyVariant.info
) MyVariant.info cadd
MyVariant.info clinvar
MyVariant.info cosmic
MyVariant.info dbnsfp.
MyVariant.info dbsnp
MyVariant.info docm
MyVariant.info emvlass
MyVariant.info evs
MyVariant.info exac
MyVariant. info grasp.
MyVariant.info mutdb
MyVariant.info snpedia
MyVariant.info snpeff
MyVariant.info welldery

16

80,000,000

 Region sequence eference sequence not avalible

oK

AN ARSI T =
0 19,650,000
5 WyGenes| Primary Data [—— - :
Name chr1:g.19568918C>T jousne F
troduanscrpt NMLODI20B540 -+
Position Chr1:19568918..19568918 GoTER10 NM_o0t208541 F—F————H——
NMLoD2s2tEe
Length 16p N o
04930 <4+
cAPZB
Attributes chpping actin protei of myscle Z-ne bela
NM_001040125 >
clinvar_attrs (9) NM_001040128 >
NM_001287531 >
Neme Valoe NM_017765 >
NA 10988 -+
alee_id 226635 S
PQ1oop repet containing 2
&t T 2067 <
&
chrom 1 45 reductase famiy 7 member A3
cytogenic 193613 ey
AKRTAZ
omim 616846.0001 eldo-kelo reduciase famlly 7 member A2
el c
nfactor
s 15869320623
4 wyhridh o singl nucleotide varant 4 0000 0 200000 460 4 200000
? e @ 000 44 400 0 0 000 00 o o0
- clinvar_hg1s end 19568918 LR o ee e e o 200 000
3 - IR
19568918
start . RS .o
clinvar_hg38 end 19242424 * o :"
start 18262424 -
.
clinvar_hgvs_attrs coding NM_015047.2:0.430G>A >
*
clinvar_hgvs_genomic .
NC_000001.10:0.19568918C>T | NC_000001.11:0.192424240T | NG_032948.1:9,14136G>A I\
clinvar_rcv_attrs (7)
Myvariant Name Value
accession RCV000210390
ciical_signii Uncertain signifcance
last_evaluated 20130201
number_suomitters 1
origin germine
preferred_name NM_015047 2(EMG1)¢.430G>A
(p.Alata4The)
roview_satus o asserton criteia provided
clinvar_rcv_conditions identifiers medgen oNz21808
name ot provided
id chrig.1956891805T

_static/plus.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 MyChem.info documentation

 		
 Chemical annotation data

 		
 Data sources

 		
 Chemical object

 		
 _id field

 		
 _score field

 		
 Available fields

 		
 Data release notes

 		
 MyChem Releases

 		
 Chemical query service

 		
 Service endpoint

 		
 GET request

 		
 Query parameters

 		
 Query syntax

 		
 Returned object

 		
 Faceted queries

 		
 Batch queries via POST

 		
 Query parameters

 		
 Example code

 		
 Returned object

 		
 Chemical annotation service

 		
 Service endpoint

 		
 GET request

 		
 Query parameters

 		
 Returned object

 		
 Batch queries via POST

 		
 Query parameters

 		
 Example code

 		
 Returned object

 		
 Server response

 		
 Status code 200

 		
 Status code 400

 		
 Status code 404

 		
 Status code 5xx

 		
 Biothings_client python module

_static/ajax-loader.gif

_static/sort_both.png

_static/sort_desc.png

_static/sort_asc.png

_images/mychem.png

_static/sort_asc_disabled.png

_static/up.png

_static/sort_desc_disabled.png

_static/up-pressed.png

